Vocabulary/bang

 ! y Factorial

Rank 0 -- operates on individual atoms of y, producing a result of the same shape -- WHY IS THIS IMPORTANT?

The Factorial of y.

Might be regarded as a special case of the Stope function (see link below), for start value identical to number of steps and step size _1:   n ^!._1 n .

```   */ 5 4 3 2 1    NB. product (5th 'falling power' of 5)
120
! 5             NB. gets abbreviated
120
! i.6           NB. 0! = 1
1 1 2 6 24 120
```

More generally, it computes the Gamma function of (1+y). If we defined Ga(y) as Gamma of real argument (y) we get

```   gamma=: ga=: !@<: : [:      NB. monadic Ga(y)= (y-1)!

ga _1r4p1    NB. Ga(-π/4)
_5.42531
ga 0         NB. Ga(0)
_
ga -i.6
_ __ _ __ _ __
ga 1 = ! 0   NB. Ga(1)= 1 = 0!
1
ga 1p1       NB. Ga(π)
2.28804
ga 2p1       NB. Ga(2π)
195.936
!(<:2p1)     NB. (2π-1)!
195.936

exp=: ^ : [:                NB. Exponential function, monad

NB. calculating the (positive) intersections of exp(y)and ga(y) by
NB. solving exp(y)- ga(y)= 0 numerically, using Newton-Raphson
NB. with seed values 1 and 10, resp

(exp-ga) VN^:_ (1)       NB. IP4=~ (0.52;1.69)
0.524922
ga (exp-ga) VN^:_ (1)
1.69033
(exp-ga) VN^:_ (10)      NB. IP5=~ (7.46;1743)
7.4636
ga (exp-ga) VN^:_ (10)   NB. Gamma overtaking the Exponential
1743.42
```

 x ! y Out Of

Rank 0 0 -- operates on individual atoms of x and y, producing a result of the same shape -- WHY IS THIS IMPORTANT?

Returns y-Combinations-x:  yCx  (read: x out of y  or: y pick x).

The number of ways of picking x balls (unordered) from a bag of y balls:

```   10!10      NB. There is only 1 way of picking all 10 balls
1
1!10       NB. There are 10 ways of choosing 1 ball from 10
10
2!10       NB. 45 ways to pick 2 out of 10
45
5!10
252
```

This example was found in K.E. Iverson, Computers and Mathematical Notation, E. Ambivalence; the table shows the first five rows of Pascal's Triangle:

```   0 1 2 3 4 !/ 0 1 2 3 4       NB. 'Out Of' table "with meaningful zeros"
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

|:!/~i.5                     NB. (transposed view)
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1
```

Common uses

In Probability theory, also Functional Analysis (Infinite Series).

Related Primitives

Stope Function (^!._1 y) to count permutations.

${\displaystyle {y \choose x}}$  `{y \choose x}`  or  ${\displaystyle {\binom {y}{x}}}$  `\binom{y}{x}`  in 'Math' (subset of LaTeX) notation.